Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rajenahally S. Narasegowda, ${ }^{\text {a }}$

 Hemmige S. Yathirajan ${ }^{\mathrm{a}}$ and Michael Bolte ${ }^{\mathrm{b}_{*}}$${ }^{\text {a }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ${ }^{\text {b }}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-CurieStraße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.032$
$w R$ factor $=0.077$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4'-Methylbiphenyl-2-carboxylic acid

The title compound, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$, is used as an intermediate for the synthesis of various biologically active and pharmaceutical compounds. Bond lengths and angles adopt usual values. The dihedral angles between the two aromatic rings [53.39(3) ${ }^{\circ}$] and between the carboxyl group and adjacent ring [42.37 (10) ${ }^{\circ}$] lie in the expected ranges. The crystal structure is characterized by centrosymmetric hydrogen-bonded dimers.

Comment

The title compound, (I), is used as an intermediate for the synthesis of various biologically active and pharmaceutical compounds (Gillis \& Markham, 1997; Markham \& Goa, 1997). In view of its importance and in order to determine the conformation of this molecule, a crystal structure determination has been carried out.

(I)

A perspective view of (I) is shown in Fig. 1. Bond lengths and angles (Table 1) can be regarded as normal [Cambridge Structural Database (CSD), Version 1.7; MOGUL Version 1.0.1; Allen, 2002]. The dihedral angle between the two

Figure 1
Perspective view of the title compound, with the atom numbering; displacement ellipsoids are drawn at the 50% probability level.

Received 24 February 2005
Accepted 3 March 2005
Online 11 March 2005
aromatic rings is $53.39(3)^{\circ}$. The carboxyl group subtends an angle of $42.37(10)^{\circ}$ with the ring to which it is attached. In seven comparable structures retrieved from the CSD containing the biphenyl-2-carboxylic acid moiety, the dihedral angles between the aromatic rings are in the range $44.9-62.9^{\circ}$, whereas the dihedral angles between the carboxyl group and the adjacent aromatic plane shows a significantly wider range of $32.5-85.9^{\circ}$. The molecules form hydrogen-bonded centrosymmetric dimers in the crystal structure (Table 2).

Experimental

4'-Methylbiphenyl-2-carbonitrile ($1.93 \mathrm{~g}, 10 \mathrm{mmol}$) was refluxed with methanol (10 ml) and $30 \% \mathrm{NaOH}$ solution $(10 \mathrm{ml})$ for 3 h to yield the title compound, which was recrystallized from dichloromethane (m.p. 419 K).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$
$M_{r}=212.24$
Monoclinic, $P 2_{1} / c$
$a=7.5953$ (15) \AA
$b=14.582$ (3) \AA
$c=10.616$ (2) \AA
$\beta=90.610(16)^{\circ}$
$V=1175.7(4) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-II two-circle	$R_{\text {int }}=0.064$
\quad diffractometer	$\theta_{\max }=25.0^{\circ}$
ω scans	$h=-9 \rightarrow 9$
5269 measured reflections	$k=-17 \rightarrow 17$
2073 independent reflections	$l=-10 \rightarrow 12$
1528 reflections with $I>2 \sigma(I)$	
Refinement	
Refinement on F^{2}	H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.02 P)^{2}\right]$
$w R\left(F^{2}\right)=0.077$	where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$S=0.88$	$(\Delta / \sigma)_{\max }<0.001$
2073 reflections	$\Delta \rho_{\max }=0.13 \mathrm{e}^{-3}$
147 parameters	$\Delta \rho_{\min }=-0.11 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{C} 1-\mathrm{C} 11$	$1.5011(18)$	$\mathrm{C} 7-\mathrm{O} 2$	$1.2287(15)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.4920(17)$	$\mathrm{C} 7-\mathrm{O} 1$	$1.3225(14)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{O} 1$	$122.50(10)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 2$	$115.78(11)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 2$	$121.65(10)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{2}$	0.84	1.83	$2.6604(13)$	170

Symmetry code: (i) $1-x, 1-y,-z$.
All H atoms were located in a difference map, but were then positioned geometrically and refined with fixed individual displacement parameters (set at 1.2 times $U_{\text {eq }}$ of the parent atom, but $1.5 U_{\text {eq }}$ for hydroxyl and methyl groups) using a riding model, with $\mathrm{O}-\mathrm{H}=$ $0.84 \AA$ and $\mathrm{C}-\mathrm{H}=0.95$ and $0.98 \AA$ for aromatic and methyl H atoms, respectively. In addition, the torsion angles of the hydroxyl group and the methyl group were refined.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Gillis, J. C. \& Markham, A. (1997). Drugs, 54, 885-902.
Markham, A. \& Goa, K. L. (1997). Drugs, 54, 299-311. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

